
Developing QuickTime
Components 101

Session 605

Developing QuickTime
Components 101

Gary Woodcock
Discreet, Inc.

Introduction
•This session covers the concepts common
to writing all types of QuickTime components

•We will not focus on the details of writing
a specific component type (e.g., an image
compressor)

What You Will Learn
•How to leverage QuickTime to deploy
your own unique technologies

•How to use components as a extensibility
and/or reusability mechanism for your software

You Should Be Familiar With…
•The C programming language
•The Memory Manager
•The Resource Manager
•The Component Manager

Session Overview
•What is a component?
•Why should I write a component?
•How do I write and debug a component?
•How do I create my own kind of component?
•How do I deliver my component?

What Is a Component?
•A component is just another kind of code library
•It can be used by multiple clients (reusability)
•It can be private or public (scope)
•It can be versioned

That Is Not Too Unique…
•True, but components are interesting because
they can:

• Be searched by capability as opposed to only
name or symbol

• Directly extend the capabilities of QuickTime
• Be delivered on Mac OS 7.x–9.x, Mac OS X,
and Windows

What Else Can They Do?
•Components can “inherit” functionality
from other components

•Components can expose user interface
•Components can use other components
to create chains of functionality

YesWindows COM
YesWindows DLL
YesMach-O library
YesCFM library

Not applicableStatic library
YesComponent

Search by Name?Type

Libraries Compared

Libraries Compared

NoWindows COM
NoWindows DLL
NoMach-O library
NoCFM library

Not applicableStatic library
YesComponent

Search by Capability?Type

Libraries Compared

YesWindows COM
YesWindows DLL
YesMach-O library
YesCFM library
NoStatic library

Windows, Mac OS X onlyComponent
Dynamically Loaded?Type

Libraries Compared

C,C++,C#,VB,etc.Windows COM
C,C++,Pascal,etc.Windows DLL

C,C++,Obj-CMach-O library
C,C++,Pascal,etc.CFM library

C,C++,Obj-C,Pascal,etc.Static library
C,C++,PascalComponent
LanguagesType

Libraries Compared

Windows.Windows COM
Windows.Windows DLL
Mac OS XMach-O library

Mac OS 9.x, X.CFM library
AnyStatic library

Mac OS 9.x, X, WindowsComponent
Supported OS’sType

Popular Components
•Image compressors/decompressors (codecs)
•Movie importers/exporters
•Graphics importers/exporters
•Video digitizers
•Media handlers

A Component Contains…
•A dispatcher
•The four required component routines
•Any of the optional component routines
•Routines defined by the component type
•Support resources

Component Manager Review
•The Component Manager manages
components and their client connections

•Integral service of Mac OS; on Windows,
delivered as part of QuickTime

•Components are identified by type, subtype,
and manufacturer

Component Manager (Cont.)
•Components must be registered before they
can be used

•Each component type has its own unique API

ComponentDescription cd;
Component compID;

cd.componentType = kMathComponentType;
cd.componentSubtype = kAnyComponentSubtype;
cd.componentManufacturer =

kAnyComponentManufacturer;
cd.componentFlags = 0L;
cd.componentFlagsMask =

kAnyComponentFlagsMask;

compID = FindNextComponent (NULL, &cd);

Component Manager (Cont.)
•Finding a component:

Component Manager (Cont.)
•Opening a component:
Component compID;
ComponentInstance ci;
OSErr myErr;

myErr = OpenAComponent (compID, &ci);

Component Manager (Cont.)
•Querying a component for supported routines:
ComponentInstance ci;
OSErr myResult;
Boolean supported;

myResult = CallComponentCanDo (ci,
kComponentTargetSelect);

if (myResult == 0)
supported = false;

else
supported = true;

Component Manager (Cont.)
•Getting a component’s version:
ComponentInstance ci;
long version;
long implementationVersion;
long interfaceVersion;

version = CallComponentVersion (ci);
interfaceVersion = (version >> 16L) & 0x0000FFFF;
implementationVersion = (version & 0x0000FFFF);

Component Manager (Cont.)
•Targeting a component:
ComponentInstance ci;
ComponentInstance target;
OSErr myErr;

myErr = CallComponentTarget (ci, target);

Component Manager (Cont.)
•Closing a component:
ComponentInstance ci;
OSErr myErr;

myErr = CloseComponent (ci);

Platform Differences
•Under Mac OS 7.x–9.x, there is a global
registration list; components can also
be registered local to an application process

•Under Mac OS X and Windows, the registration
list is local to each process

Platform Differences
•Component reference constants are shared
between process address spaces only
on Mac OS 7.x–9.x

•Modification seeds apply only on a per-process
basis for Mac OS X and Windows

•Instances can be counted only on a per-process
basis for Mac OS X and Windows

Platform Differences
•Carbon components do not run under
Mac OS 7.x–9.x

•On Mac OS X and Windows, the Register
and Unregister routines are invoked each
time a new QuickTime process begins

Implications
•Avoid using the component refcon to store
common instance data across processes

•Avoid using Register and Unregister as “execute
once and once only” setup and teardown

•Avoid counting instances to limit connections
to your component

Development Tools
•Project Builder (Mac OS X)
•CodeWarrior (Mac OS 7.x–9.x)
•Visual Studio .NET (Windows)

Can We Start Already?
•We are going to define a component that can
add two numbers and produce the result

•It supports the required routines and most
of the optional routines

•We will see how calls in the client program
translate to routines in the component

enum {kMathAddSelect = 0};

EXTERN_API (ComponentResult) MathAdd
(ComponentInstance ci, SInt16 inFirstNum,
SInt16 inSecondNum, SInt32 * outResult)
ComponentCallNow (kMathAddSelect,
sizeof (SInt16) + sizeof (SInt16) +
sizeof (SInt32 *));

Defining an API
•We want to add two numbers:

#define kTheComponentType ‘MATH’
#define kTheComponentSubType ‘WWDC’
#define kTheComponentManufacturer‘Appl’
#define kTheComponentResID 128
#define kTheComponentAPIVersion 0x00010000
#define kTheComponentImplementationVersion

0x00000001

Constants
•We need constants for registering and finding
our component:

struct MathGlobals {
ComponentInstance self;
ComponentInstance target;

};
typedef struct MathGlobals MathGlobals;
typedef struct MathGlobals * MathGlobalsPtr;

Globals
•Each component instance needs global storage:

The Dispatcher
•The dispatcher is responsible for mapping
selectors to routines; You can:

• Write it yourself
• Generate it automatically using the
ComponentDispatchHelper.c file

•It is far simpler to use the latter method!

Dispatch Helper
• ComponentDispatchHelper.c is part of the
QuickTime SDK

•We will write a dispatch header file that provides
values for the #defines required by the
dispatch helper

ComponentSelectorOffset (10)
ComponentRangeCount (2)
ComponentRangeShift (8)
ComponentRangeMask (FF)
ComponentStorageType (Ptr)

Dispatch Header
•The first portion of our dispatch header
looks like this:

ComponentSelectorOffset (10)

•Note this number is the contiguous number
of base selectors specified, not the total
possible number

Dispatch Header (Cont.)
•This line indicates the number of base
selectors specified:

ComponentRangeCount (1)

•A selector range is a contiguous set of selectors,
where the first selector and the number
of selectors are defined by ComponentRangeShift

and ComponentRangeMask

Dispatch Header (Cont.)
•This line indicates the number of selector
ranges specified:

ComponentRangeShift (8)

•For example, a selector value of 0x0101,
using the range shift above, belongs
to selector range 2 (1 + 1)

Dispatch Header (Cont.)
•The ComponentRangeShift is the amount
a selector value is shifted left, then incremented,
to produce its range number:

•Using the previous example, a selector value
of 0x0101 using this mask maps to routine entry 1

Dispatch Header (Cont.)
•The ComponentRangeMask is used to mask
the selector value to define which routine
entry in a range is mapped to the selector:

ComponentRangeMask (FF)

ComponentStorageType (Ptr)

ComponentStorageType (Handle)

Dispatch Header (Cont.)
•This line indicates the type of storage used
by our component:

•Or alternatively,

ComponentRangeBegin (0)

ComponentError (GetPublicResource)

ComponentError (ExecuteWiredAction)

ComponentError (GetMPWorkFunction)

StdComponentCall (Unregister)

StdComponentCall (Target)

StdComponentCall (Register)

StdComponentCall (Version)

StdComponentCall (CanDo)

StdComponentCall (Close)

StdComponentCall (Open)

ComponentRangeEnd (0)

Dispatch Header (Cont.)
•Our first range is defined as follows:

ComponentRangeBegin (1)
ComponentCall (MathAdd)

ComponentRangeEnd (1)

Dispatch Header (Cont.)
•And the second range is:

#define CALLCOMPONENT_BASENAME() __Math
#define CALLCOMPONENT_GLOBALS() \

MathGlobalsPtr storage
#define COMPONENT_UPP_PREFIX() uppMath
#define COMPONENT_DISPATCH_FILE \

“MathComponentDispatch.h”
#define COMPONENT_SELECT_PREFIX kMath
#define MATH_BASENAME()\

CALLCOMPONENT_BASENAME()
#define MATH_GLOBALS() \

CALLCOMPONENT_GLOBALS()

Helper #Defines
•We need to set a number of #defines for
ComponentDispatchHelper.c:

#define CALLCOMPONENT_BASENAME() __Math

Helper #Defines (Cont.)
•This #define specifies the common base
prefix of the routine names in our component
implementation:

•For example, our component’s Open routine
is called “__MathOpen”

#define CALLCOMPONENT_GLOBALS() \
MathGlobalsPtr storage

Helper #Defines (Cont.)
•This #define specifies the type of instance
storage in our component implementation:

•Our component instance storage is of type
“MathGlobalsPtr”

Helper #Defines (Cont.)
•This #define specifies the prefix of the
universal procedure pointer constants
used by our component:
#define COMPONENT_UPP_PREFIX() uppMath

#define COMPONENT_DISPATCH_FILE() \
“MathComponentDispatch.h”

Helper #Defines (Cont.)
•This #define specifies the name of the
dispatch file used by our component:

#define MATH_BASENAME() \
CALLCOMPONENT_BASENAME()

#define MATH_GLOBALS() \
CALLCOMPONENT_GLOBALS()

Helper #Defines (Cont.)
•Because the same instance storage type
and selector prefix is used for both the base
routines and our component API routines,
we can use the following shortcut:

#include “MathComponentSelectors.h”
#include <Components.k.h>
#include “MathComponentSelectors.k.h”
#include <ComponentDispatchHelper.c>

Helper #Includes
•These #includes, together with the
#defines we set earlier, generate the
dispatcher when compiled:

•Next, we will see how to write the
MathComponentSelectors.k.h file

#ifdef MATH_BASENAME
#ifndef MATH_GLOBALS

#define MATH_GLOBALS()
#define ADD_MATH_COMMA

#else
#define ADD_MATH_COMMA ,

#endif
#define MATH_GLUE(a,b) a##B
#define MATH_STRCAT(a,b) MATH_GLUE(a,b)
#define ADD_MATH_BASENAME(name) \

MATH_STRCAT(MATH_BASENAME(),name)
#endif /* MATH_BASENAME */

Selectors.k.h
•These are utility macros required by
ComponentDispatchHelper.c:

#ifdef MATH_BASENAME
EXTERN_API (ComponentResult) \

ADD_MATH_BASENAME(Add) \
(MATH_GLOBALS() ADD_MATH_COMMA \
SInt16 inFirstNum, SInt16 inSecondNum, \
SInt32 * outResult);

Selectors.k.h (Cont.)
•This section defines the prototype of MathAdd
for the dispatch helper:

•This lines up with our definition in
MathComponentSelectors.h

enum { uppMathAddProcInfo =

kPascalStackBased |

RESULT_SIZE(SIZE_CODE

(sizeof(ComponentResult))) |

STACK_ROUTINE_PARAMETER(1,

SIZE_CODE(sizeof(ComponentInstance))) |

STACK_ROUTINE_PARAMETER(2,

SIZE_CODE(sizeof(SInt16))) |

STACK_ROUTINE_PARAMETER(3,

SIZE_CODE(sizeof(SInt16))) |

STACK_ROUTINE_PARAMETER(4,

SIZE_CODE(sizeof(SInt32 *))) };

Selectors.k.h (Cont.)
•This is the MathAdd procedure info:

Let’s Write the Routines…
•We will look at how each of the routines
in our component is implemented

The Open Routine
EXTERN_API (ComponentResult) __MathOpen

(MathGlobalsPtr globals, ComponentInstance self)
{

ComponentResult result;

result = noErr;
globals = (MathGlobalsPtr) NewPtrClear (sizeof

(MathGlobals));
if (globals != NULL) {

SetComponentInstanceStorage (self, (Handle)
globals);

globals->self = globals->target = self;
} else result = MemError();
return (result);

}

The Close Routine
EXTERN_API (ComponentResult) __MathClose

(MathGlobalsPtr globals, ComponentInstance self)
{

ComponentResult result;

result = noErr;
if (globals != NULL)

DisposePtr ((Ptr) globals);

return (result);
}

The Version Routine
EXTERN_API (ComponentResult) __MathVersion

(MathGlobalsPtr globals)
{

globals; /* Suppress “unused variable” warning */

return (kMathAPIVersion |
kMathImplementationVersion);

}

The CanDo Routine
•<insert Jamba Juice run here>
•We do not have to write this routine—the
dispatch helper generates it for us automatically

The Register Routine
EXTERN_API (ComponentResult) __MathRegister

(MathGlobalsPtr globals)
{

SInt32 response;
OSErr result;
globals; /* Suppress “unused variable” warning */
response = 0L;
result = Gestalt (gestaltQuickTimeVersion,

&response);
if ((result == noErr) && (response >= 0x04128000))

return (noErr);
else

return (-1L);
}

The Target Routine
EXTERN_API (ComponentResult) __MathTarget

(MathGlobalsPtr globals, ComponentInstance target)
{

globals; /* Suppress “unused variable” warning */

if (target == NULL)
globals->target = globals->self;

else
globals->target = target;

return (noErr);
}

The Unregister Routine
EXTERN_API (ComponentResult) __MathUnregister

(MathGlobalsPtr globals)
{

globals; /* Suppress “unused variable” warning */

/* Perform any cleanup necessary to allow this
 component to be unregistered */

return (noErr);
}

Public Resources
•The Component Manager provides for public
and private resources

•Private resources are those intended for use
solely by the component implementation

•Public resources are those intended for use
by other software as well as the component
implementation

Public Resources (Cont.)
•A component resource map (‘thnr’) resource
is used to associate a component’s private
resource type and ID with a public type and ID

•The GetComponentPublicResource routine
is used to access public resources

Public Resources (Cont.)
•Your component does not have to implement
the GetPublicResource routine in order for your
component to export public resources—only the
‘thnr’ resource is needed

The MathAdd Routine
EXTERN_API (ComponentResult) __MathAdd

(MathGlobalsPtr globals, SInt16 inFirstNum,
SInt16 inSecondNum, SInt32 * outResult)

{
ComponentResult result;

globals; /* Suppress “unused variable” warning */
result = noErr;
if (outResult != NULL)

*outResult = inFirstNum + inSecondNum;
else

result = paramErr;
return (result);

}

Component Glue
•We need to write some “glue” to help the
Component Manager do the right thing
when a client calls our routine

•We will do this by creating a stub library
that both our component and any of our
component’s clients link against

•We will also define a couple of glue helper
routines—CallMacComponent and
CallWinComponent

CallMacComponent
#if TARGET_API_MAC_OS8

enum { uppCallComponentProcInfo =
kPascalStackBased |
RESULT_SIZE(SIZE_CODE
(sizeof(ComponentResult))) |
STACK_ROUTINE_PARAMETER(1,
kFourByteCode) };

#define CallMacComponent(gluePB) \
CallUniversalProc (CallComponentUPP, \

uppCallComponentProcInfo, &gluePB)
#else

#define CallMacComponent(gluePB) \
CallComponentDispatch \

((ComponentParameters *)&gluePB)
#endif

CallWinComponent
ComponentResult

CallWinComponentWithThreeParams
(ComponentInstance ci, UInt8 flags, SInt16 what,
SInt32 param1, SInt32 param2, SInt32 param3) {

union { ComponentParameters comp;
SInt8 dummy (sizeof (ComponentParameters)
+ (3 * sizeof (SInt32))); } CompParams;

CompParams.comp.flags = flags;
CompParams.comp.paramSize =

sizeof (CompParams.dummy);
CompParams.comp.what = what;
CompParams.comp.params[0] = param1;
CompParams.comp.params[1] = param2;
CompParams.comp.params[2] = param3;
return (CallComponent (ci, &CompParams.comp)); }

MathComponentGlue
EXTERN_API (ComponentResult) MathAdd

(ComponentInstance ci, SInt16 inFirstNum,
SInt16 inSecondNum, SInt32 * outResult)

{
#if TARGET_OS_WIN32

return (CallWinComponentWithThreeParams
(ci, 0, kMathAddSelect, (SInt32) inFirstNum,
(SInt32) inSecondNum, (SInt32) outResult));

#else

MathComponentGlue
#define kMathAddParamSize \

(sizeof (MathAddParams))

struct MathAddParams {
SInt32 * outResult;
SInt16 inSecondNum;
SInt16 inFirstNum; };

typedef struct MathAddParams MathAddParams;
struct MathAddGluePB {

UInt8 componentFlags;
UInt8 componentParamSize;
SInt16 componentWhat;
MathAddParams params;
ComponentInstance inInstance; };

typedef struct MathAddGluePB MathAddGluePB;

MathComponentGlue
MathAddGluePB gluePB;

gluePB.componentFlags = 0;
gluePB.componentParamSize =

kMathAddParamSize;
gluePB.componentWhat = kMathAddSelect;
gluePB.params.inFirstNum = inFirstNum;
gluePB.params.inSecondNum = inSecondNum;
gluePB.params.outResult = outResult;
gluePB.inInstance = ci;
return (CallMacComponent (gluePB));

#endif
}

What the Heck
Was That All About?
•Basically, we are building up a
ComponentParameters structure
(refer to Components.h) so that the
ComponentManager receives data in a
format it expects before it passes the data
along to a component function

static HINSTANCE ghInst = NULL;
BOOL WINAPI DllMain (HANDLE hInst,

ULONG ul_reason_for_call, LPVOID lpReserved) {
switch (ul_reason_for_call) {

case DLL_PROCESS_ATTACH:
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:

break; }
return TRUE; }

Windows Entry Point
•A Windows component is basically a DLL,
so it needs a main entry point:

LIBRARY MathComponent

EXPORTS

DllMain @1
__MathComponentDispatch

Module Definition
•A Windows module definition is used to tell
the linker where to find the component’s
main entry point

•This is usually in a module definition (.def) file

PowerPC ‘thng’
resource ‘thng’ (kTheComponentResID) {

kTheComponentType, kTheComponentSubType,

kTheComponentManufacturer, 0,

kAnyComponentFlagsMask, 0, 0,

‘strn’, kTheComponentResID,

‘stri’, kTheComponentResID, 0, 0,

(kTheComponentAPIVersion |

kTheComponentImplementationVersion),

componentDoAutoVersion |

componentWantsUnregister |

componentHasMultiplePlatforms, 0, 0,

{ cmpWantsRegisterMessage, ‘_PPC’,

kTheComponentResID,

platformPowerPC },

‘thnr’, kTheComponentResID };

Carbon CFM ‘thng’
resource ‘thng’ (kTheComponentResID) {

kTheComponentType, kTheComponentSubType,

kTheComponentManufacturer, 0,

kAnyComponentFlagsMask, 0, 0,

‘strn’, kTheComponentResID,

‘stri’, kTheComponentResID, 0, 0,

(kTheComponentAPIVersion |

kTheComponentImplementationVersion),

componentDoAutoVersion |

componentWantsUnregister |

componentHasMultiplePlatforms, 0, 0,

{ cmpWantsRegisterMessage, ‘cfrg’,

kTheComponentResID,

platformPowerPCNativeEntryPoint},

‘thnr’, kTheComponentResID };

Carbon Mach-O ‘thng’
resource ‘thng’ (kTheComponentResID) {

kTheComponentType, kTheComponentSubType,

kTheComponentManufacturer, 0,

kAnyComponentFlagsMask, 0, 0,

‘strn’, kTheComponentResID,

‘stri’, kTheComponentResID, 0, 0,

(kTheComponentAPIVersion |

kTheComponentImplementationVersion),

componentDoAutoVersion |

componentWantsUnregister |

componentHasMultiplePlatforms, 0, 0,

{ cmpWantsRegisterMessage, ‘dlle’,

kTheComponentResID,

platformPowerPCNativeEntryPoint},

‘thnr’, kTheComponentResID };

Windows ‘thng’
resource ‘thng’ (kTheComponentResID) {

kTheComponentType, kTheComponentSubType,

kTheComponentManufacturer, 0,

kAnyComponentFlagsMask, 0, 0,

‘strn’, kTheComponentResID,

‘stri’, kTheComponentResID, 0, 0,

(kTheComponentAPIVersion |

kTheComponentImplementationVersion),

componentDoAutoVersion |

componentWantsUnregister |

componentHasMultiplePlatforms, 0, 0,

{ cmpWantsRegisterMessage, ‘dlle’,

kTheComponentResID,

platformWin32},

‘thnr’, kTheComponentResID };

The ‘cfrg’ Resource
resource ‘cfrg’ (0) { {

extendedEntry {

kPowerPCCFragArch, kIsCompleteCFrag,

kNoVersionNum, kNoVersionNum,

kDefaultStackSize, kNoAppSubFolder,

kImportLibraryCFrag,

kDataForkCFragLocator,

kZeroOffset, kCFragGoesToEOF,

“Math”, ‘cpnt’,

“\0x00\0x80”,

“”, “”, “Math” };

};

};

The ‘dlle’ Resource
resource ‘dlle’ (kTheComponentResID) {

“__MathComponentDispatch”

};

resource ‘strn’ (kTheComponentResID)
{

“Math”
};

resource ‘stri’ (kTheComponentResID)
{

“Does basic math operations.”
};

‘strn’ and ‘stri’ Resources

The ‘thnr’ Resource
resource ‘thnr’ (kTheComponentResID)
{

{
‘STR ‘, 1, 0,
‘strn’, kTheComponentResID, 0

}
}

Rez and RezWack
• Rez is a DOS console application used
to compile Mac OS resource (.r) files into
Windows compatible resource fork (.qtr) files

• RezWack is a DOS console application used
to embed a resource fork (.qtr) file into
a Windows DLL or executable file

Registering Components
•There are three main methods for registering
components:

• Auto registration
• Reinstaller 3
• Programmatic registration

Auto Registration
•Mac OS 7.x–9.x: Copy component into System
Folder : Extensions : QuickTime Extensions
and reboot

•Mac OS X: Copy component into
/Library/QuickTime or /Users/
<username>/Library/QuickTime

•Windows: Copy component into
Windows/System32/QuickTime or
into application directory

Reinstaller 3
•Reinstaller 3 is a utility to register components
in Mac OS 7.x–9.x without rebooting

•Download at
http://developer.apple.com/quicktime/
quicktimeintro/tools.index.html

Programmatic Registration
• RegisterComponent registers a component
given its description and main entry point

• RegisterComponentResource registers a
component given its component resource

Why Use It?
•Programmatic registration is handy if you
do not want other applications to have access
to your component

•It is useful as an alternate means of source-level
debugging your component

Debugging Components
•Source level debugging is available in all
major development environments

•On Mac OS 7.x–9.x, the ‘thng’ MacsBug dcmd

is very helpful
•On Windows, you can use the Visual Studio
editor or RezDet to make sure your component
resource was properly attached to your
component

Debugging Components
• DebugStr (Mac OS) and OutputDebugStr
(Windows) are your friends

•Use them to determine whether your
component’s routines are being invoked,
and in what order

How Do I Deliver
My Component?
•You can ship it yourself, either alone
or with an application that uses it

•You can apply to Apple’s QuickTime Component
Download Program at
http://developer.apple.com/quicktime/qtcdform.html

Common Problems
•Problem: My component compiles and links,
but it is never registered

•If you have a Register routine, make sure
it is not failing

•If you are auto-registering, make sure your
component is installed in the correct directory

Common Problems
•For Mac OS X and Windows, make sure
your ‘dlle’ resource is defined

•For Carbon, make sure your ‘cfrg’ resource
is defined

•Make sure there is no mismatch between
your dispatcher name and the name exported
by your component

Common Problems
•Problem: My custom component’s routine
has wacky values in its arguments, and
sometimes crashes

•If this is your own component type, make sure
the sizes of all arguments in macros, enums,
and declarations are correct—otherwise,
arguments on the stack can be misaligned

Common Problems
•Problem: My component’s Register routine
never gets called

•Verify “cmpWantsRegisterMessage” flag
is set in the component platform entry
of your component resource, not in the 68K
flags field at the head of the resource, and not
in the componentRegistrationFlags field

Common Problems
•If you are programatically registering your
component, you will need to call
CallComponentRegister to force your
component’s Register routine to execute

Common Problems
•Problem: My component’s routine never
gets called

•Make sure your component dispatch file
is properly accounting for all selectors

Common Problems
•Problem: My component opens another
of my components and needs to share
internal state with it

•You can create a private selector in your
component API that allows the opening
component to call the opened component
with the state information

Common Problems
•Problem: My component requires a connection
to hardware resource “x”, and “x” only supports
a single connection per physical device, although
multiple physical devices can be present; How
should my component handle this?

•Wow, that is a good one

Common Problems
•Register your component once for each unique
physical device, and allow only a single instance
of each component to be open at any time

•Assumes that each physical device can be uniquely
and persistently identified, and that it is possible
to track device connection status across address
spaces

Common Problems
•Register your component once, and allow
multiple instances of your component, up
to the number of physical devices present

•Has same qualifications as the former
approach, and also makes it slightly more
difficult to count the devices using the
Component Manager

Common Problems
•Register your component once, with no
limitations on how many instances are allowed

•Has same qualifications as the former
approaches, and also makes device management
more cumbersome, particularly since a single
hardware connection can be shared among
multiple clients

Common Problems
•There is no magic answer to this issue
•You will have to experiment to see what
works best for your situation

Closing Advice
•Do not allow multiple instances of your component
if it can not support multiple instances

•Be sure to clean up properly when an instance
of your component is closed

•Use Gestalt to make sure a QuickTime service
your component needs is present before trying
to use it

Closing Advice
•Use the ComponentDispatchHelper

•Do not forget the Component Manager
has platform differences

•Look for an existing component API before
rolling your own—QuickTime’s got lots of them

•Subscribe to the QuickTime-API mailing list—do
not forget to contribute!

Room A2
Wed., 9:00am
Room A2

Wed., 9:00am

600 The State of QuickTime in 2002

Room A2
Wed., 10:30am

Room A2
Wed., 10:30am

601 Building QuickTime Savvy Apps

Room A2
Wed., 2:00pm
Room A2

Wed., 2:00pm

602 QuickTime for Video-Intensive
Applications

Room A2
Wed., 3:30pm
Room A2

Wed., 3:30pm

603 Media Integration with QuickTime

Room A2
Wed., 5:00pm
Room A2

Wed., 5:00pm

604 Delivering Content
via Interactive QuickTime

QuickTime Roadmap

Room J1
Fri., 10:30am
Room J1

Fri., 10:30am

FF010 QuickTime

Room A2
Fri., 2:00pm
Room A2

Fri., 2:00pm

606 QuickTime for the Web

Room A2
Fri., 3:30pm
Room A2

Fri., 3:30pm

607 QuickTime and MPEG4:
A Technical Overview

QuickTime Roadmap

Who to Contact

Gary Woodcock
Discreet, Inc.
garyw@unthinkable.com

http://developer.apple.com/wwdc2002/urls.html

Jeff Lowe
QuickTime Evangelist
jefflowe@apple.com

For More Information
•The QuickTime Developer Series published by
Morgan Kaufmann

•QuickTime Developer Web Site
http://developer.apple.com/quicktime

•QuickTime-API Mailing List
http://lists.apple.com/mailman/listinfo/quicktime-api

•Download the sample code at
http://www.unthinkable.com/downloads/wwdc2002/
- the files are math.sit.hqx or math.zip

Reminder

The QuickTime Engineering Team
Is Holding a “Hands On Lab” Everyday
from 1:00-4:00pm in Room G… Stop By!

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

